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The Journal of Immunology

Variation and Genetic Control of Gene Expression in Primary
Immunocytes across Inbred Mouse Strains

Sara Mostafavi,* Adriana Ortiz-Lopez,† Molly A. Bogue,‡ Kimie Hattori,†

Cristina Pop,* Daphne Koller,* Diane Mathis,† Christophe Benoist,† and

The Immunological Genome Consortium1

To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we per-

formed, as part of the Immunological Genome Project, gene expression profiling for CD4+ T cells and neutrophils purified from 39

inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant

variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with

apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing

a useful resource of “natural knockouts.” We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of

this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted

one of the cell types, suggesting cell type–specific regulatory mechanisms. Using a conditional regression algorithm, we predicted

regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap

with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of

these and parallel data from CD4+ T cells of healthy humans demonstrated intriguing similarities in variability of a gene’s

expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong

cis-acting genetic variants. We speculate that this “conservation of variation” reflects a differential constraint on intraspecies

variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for

others. The Journal of Immunology, 2014, 193: 000–000.

F
or more than a century, inbred mice have played a unique
role in biomedical research. Their group homogeneity,
phenotypic reproducibility, and genetic stability over time

have led to key discoveries in essentially every area of biomedical
research (1), including the discovery of fundamental concepts of
immunology such as histocompatibility, MHC restriction, or ge-
netic susceptibility to autoimmune diseases. The nearly homogeneous
nature of an inbred strain’s genome underlies the extraordinary power
of targeted germline modifications, and it has supported mapping of
loci associated with disease or phenotypic traits. The genomes of
laboratory strains have been molded by strong selective pressures

linked to their domestication by mouse fanciers in China and Europe,
then to inbreeding and allele fixation in biomedical research colonies.
These genomes incorporate segments from several origins (2), as now
clearly established by the decoding of the complete genome of the
reference C57BL/6J, followed by a number of other inbred strains (3,
4). Efforts to standardize and integrate phenotypic and genetic in-
formation, as exemplified by the Mouse Phenome Database (MPD)
project (5), are also helping to exploit the full potential of inbred
strains in biomedical research.
The Immunological Genome (ImmGen) project is an interna-

tional collaboration of laboratories that collectively perform a
thorough dissection of gene expression and its regulation in the
immune system of the mouse. Genome-wide gene expression data
have been collected for ∼250 immunological cell types of the
mouse, yielding insights into genomic correlates of immunocyte
differentiation and lineages (6). The assembled data also enabled
predictions about regulatory networks that underlie mouse he-
matopoiesis (7). The first phase of the ImmGen project mainly
used the reference C57BL/6J strain, and it thus focused on iden-
tifying changes in gene expression during differentiation and ac-
tivation in the context of a unique genome. However, there is
much value in analyzing the impact of functional genetic variation
on gene expression levels. Variants influencing gene expression
are pervasive in mammalian species and comprise a large majority
of the disease-related variants identified in genome-wide associ-
ation studies (8). Combined analysis of gene expression and ge-
notype data across a genetically diverse population is a powerful
means to understand the impact of genotypic variation on cellular
processes, and ultimately to build mechanistic models that link
genetic variation to detailed cellular processes in a context-
specific manner (8, 9). Several comparative analyses of gene ex-
pression have been performed across inbred mouse strains (10–14)
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but were of limited breadth and/or performed in cell types not
directly relevant to ImmGen.
In terms of understanding human disease, whereas the mouse

models have been invaluable in establishing fundamental para-
digms of immunologic function, caution has been suggested in
translating findings from the mouse to the human immune system
(15). Similarities and differences have been reported in the ge-
nomic underpinning of immune lineages of humans and mice,
whether at steady-state or after cell activation (16–19). A direct
comparison of the genetic underpinning of these differences
would also be valuable in ascertaining what mouse models can be
usefully applied to understand human diseases and their genetics.
To better understand the effect of genetic variation on the mouse

immune system, we generated RNA expression data for 39 of
the main inbred strains in the MPD “Priority Strain Panel.” Us-
ing rigorous ImmGen standard operating procedures, genome-
wide expression data were generated for two immunological cell
types, CD4+ T cells (T4) and polymorphonuclear neutrophils
(granulocytes, GN). These were chosen to represent the main
lymphoid and myeloid branches of the immune system, as well as
its adaptive and innate facets. This effort paralleled a study of
similar design in an ethnically diverse population of healthy
humans, the Immune Variation (ImmVar) study, where genotype
and gene expression data were collected for T4 and CD14+CD162

monocytes (20–22). This matching study design allowed us to
compare transcriptional variability and its roots in the two species.
In the present study, we first report on the impact of genetic
background on gene expression levels in mouse T4 and GN,
identify cis expression quantitative trait loci (cis-eQTLs), and
chart regulatory interactions that can be inferred from the per-
turbation of the regulatory network by genetic variation. Second,
we compare the impact of functional variation in humans and mice
by exploring the overlap between expression variability and its
genetics in the two species.

Materials and Methods
Gene expression and genotype data

Inbred mouse strains from the MDP Priority Strain Panel, representing 39
strains, were obtained from The Jackson Laboratory (Bar Harbor, ME) at
5 wk of age. All mice were bred in The Jackson Laboratory under specific
pathogen-free conditions. CD3+CD4+CD62L+ naive T splenocytes and
CD11b+Ly6G+ bone marrow GN were sorted from pools of two to three
mice. Two biological replicates were generated for each strain using the
ImmGen standard operating protocol (http://www.immgen.org). Gene ex-
pression data were generated for bone marrow GN and T4 using Affy-
metrix ST1.0 microarrays, the platform used for the main ImmGen
compendium, resulting in the quantification of expression levels for 25,134
probes corresponding to 21,951 unique genes. Data were processed and
normalized using the ImmGen standard operating protocol (http://www.
immgen.org). When indicated, data were filtered to only include genes
with .0.95 probability of expression (or a mean of .120 expression on
the intensity scale; see standard operating protocol). This filtering criteria
resulted in 11,598 and 11,285 expressed transcripts in T4 and GN, re-
spectively, with 131,85 transcripts expressed in one or the other, and 9,698
transcripts expressed in both cell types. A threshold for absence of expres-
sion was also set at ,0.05 probability of expression (or a ,42 expression
level on intensity scale). Genotype data were obtained from the mouse
HapMap genotype resource (http://mouse.cs.ucla.edu/mousehapmap) (23).
Only genotyped single nucleotide polymorphisms (SNPs) with minor allele
frequency of .0.05 and a #10% missing rate (resulting in a total of 96,779
SNPs) were used in this study.

Defining the true variability metric, bimodality in gene
expression, and complete loss of function loci

All analyses were performed in the MATLAB computing environment
(R2013a, version 8.1.0.604). At least two biological replicates were
available for each mouse and each cell type (for the strains for which there
were more than two replicates, we randomly chose two of the replicates for

this analysis). For the true variability (TV) metric, two quantities were
computed for each gene and each cell type using the log-transformed data:
1) the between-strains mean absolute deviation (MAD), which was divided
by the mean gene expression level for that gene; and 2) the average of
within-strains MAD, where the MAD for each strain was computed using
the two replicates for that strain and then divided by the mean gene
expression level for that gene. The TV score for each gene was defined
as the difference between the first quantity, representing both mean-
ingful and unwanted variability, and the second quantity, representing
the unwanted variability. We note that there are two main differences
between the TV metric proposed here and a standard ANOVA ap-
proach: first, we chose to quantify variability using MAD as opposed
to variance because the latter gives more weight to extreme values.
Second, as opposed to an associated F-statistic in ANOVA, where the
test statistics (interpreted as the true variability score) is the ratio of
two variances, here we use the difference of the two MADs as the
score. We chose to use the difference so to emphasize the magnitude of
the variability, in addition to the relative variability of the within-
strains and between-strains MAD.

Bimodal genes were identified using two criteria: the first criterion was
based on the assessment of the fit of a mixture of Gaussian distributions
with two components to expression levels across the strains, and the
second criterion used a threshold on the fold difference between high-
and low-expressing strains. The mixture of Gaussians were fit using
MATLAB’s gmdistribution function (R2013a, version 8.1.0.604). A like-
lihood ratio test was used to assign a bimodality p value to each gene by
comparing the likelihood of a mixture of Gaussian distributions with two
components with simply the fit of a single Gaussian distribution. Genes
with bimodality p , 1026 and at least a 2-fold difference in top two high-
expressing and bottom two low-expressing strains were identified as bi-
modal. Complete loss-of-function loci were identified as those bimodal
genes that additionally satisfied a strict threshold on expression levels: an
expression of ,42 (corresponding to ,0.05 probability of expression) for
at least two strains and expression .120 (corresponding to .0.95 prob-
ability of expression) for at least two strains.

eQTL association mapping for mice

It is well appreciated that genetic association studies in inbred strains are
impacted by population stratification, which violates the assumptions of
standard statistical tests and leads to an abundance of false positive asso-
ciations (and therefore an inflation of association p values) (24). To account
for population stratification, we used linear regression, regressing out the
effect of the top two genotype PCs from log gene expression data. We
chose two PCs by quantifying the inflation of observed p values using the l
statistic (25) as we varied the number of removed genotype PCs from one
to five. A cis window of 1 Mb centered on transcription start site (TSS) was
used to identify all cis SNPs for each gene.

Joint analysis. To increase statistical power, for the joint analysis, residual
expression data (after removing genotype PCs, see above) from both cell
types were concatenated (after removing mean expression for each cell
type separately), resulting in a dataset with 2 3 39 samples and 13,185
expressed transcripts (expressed in at least one cell type). For each SNP-
gene pair, the Wilcoxon rank sum statistic (as implemented in MATLAB
R2013a, version 8.1.0.604) was used to test whether the expression of
the gene was significantly different between strains with the reference
or the alternative allele at the given SNP. Ten thousand permutations
were performed for each SNP-gene pair, permuting the assignment of
SNP values to strains while keeping intact the correspondence between
genotype assigned to the T4 and GN sample for the same strain (thus
accounting for “repeated” samples). A gene-level p value was assigned
that accounted for the number of tested SNPs per gene by using the
minimum permutation p value across all tested SNPs for that gene as the
null distribution (26, 27). The final set of cis-eQTLs was defined by
setting a 5% false discovery rate (FDR) threshold on the gene-level
p values.

Cell-specific eQTL analysis. Cell-specific eQTLs were identified by
testing the significance of an interaction term between genotype and
cell type indicator in a linear regression setting, where the fit of the
baseline model (no interaction) with one that additionally included
a cell type indicator by genotype interaction term was assessed using an
F test. In particular, we model the expression level of gene g in tissue t
for strain i as xg,t,i 5 ag,t 1 bgsi 1 gg,tsi where ag,t is genotype-in-
dependent tissue-specific effect for tissue t and gene g, bg is the tissue-
shared genotype effect, and gg,t represents the cell-specific genotype
effect for tissue t. As above, gene-level p values were computed using
10,000 permutations (permuting the assignment of genotype values to
the strains).
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Constructing regulatory networks in mouse and validation
using Ontogenet links

For constructing regulatory networks, genes expressed in both cell types and
identified to have nonnegligible TV scores (as per Supplemental Fig. 1A)
were used, which resulted in 3675 analyzed genes. Among these, 164 are
transcription factors (TFs; as defined in Ref. 7). Two networks (one for
each cell type) were constructed using stepwise regression, where a sparse
set of TFs (regulators) was identified for each target gene (set of targets
includes both TFs and nonregulatory genes). More specifically, for each
target gene, stepwise regression was performed using all regulators (ex-
cluding autoregulation), and inferred regulators were identified using a 5%
FDR to correct for the number of TFs tested for each target. A “joint
network” was also constructed using the same approach but applied on
concatenated expression data form both cell types (after removing mean
gene expression from each cell type). Networks were constructed on ge-
notype PC–corrected data.

We used the joint network constructed from T4 and GN data to compare
the coexpression-based links derived in the present study with those derived
from the ImmGen data (using the Ontogenet algorithm; see Ref. 7). We
decided to use the joint network, as we observed a high degree of over-
lap between networks constructed individually from each cell type (see
Results), and to identify persistent, and thus more likely true positive,
relationships. Regulatory interactions and modules defined by Ontogenet
were downloaded from the ImmGen Web site (http://www.immgen.org).
Note that in Ref. 7, two types of modules were defined: initially 81 larger
“coarse-grained modules” were defined, and subsequently some of these
modules were refined into smaller modules with more coherent expression,
resulting in 334 “fine modules.” Coarse modules were constructed to
capture the mechanisms that coregulate a larger set of genes in one cell-
lineage, whereas fine modules were constructed to capture the distinct
regulatory mechanism controlling only a smaller subset of these genes in
the sublineage(s). Only “fine modules” and their “top regulators,” repre-
senting more functionally specific gene groups and links, were used in the
present analyses. Based on these data, a list of 4083 testable links con-
necting the top regulators to all genes in their assigned module was gen-
erated. First, the replication rate for this list was computed by assigning
a p value to each link in the present study based on the coexpression of
the corresponding regulator-target pair, and then assessing the proportion
of true-positive p values using Storey’s p1 (28). To correct for the overall
inflation of p values between all pairs of genes, as is often observed in
coexpression data, we used the distribution of p values for coexpression of
all gene/gene pairs as the null distribution to assign a p value to each of the
4083 links. Second, the links identified in this study were tested for con-
sistency with those identified by the Ontogenet algorithm on the ImmGen
data using a hypergeomtric test. This test identified regulators whose
inferred targets were also coregulated (i.e., assigned to the same module)
according to Ontogenet. Third, we computed the proportion of links
identified in the present study that were also reported by Ontogenet and
used the hypergeometric test to compute a p value for the overlap.

Gene expression, genotype, and eQTL discovery in human

Genotype and gene expression for T4 and neutrophils were obtained from
the ImmVar study. As done for the mouse data, cis-eQTLs were defined
using a 1-Mb window centered on the TSS. Gene expression data were
corrected for three genotype PCs and 30 expression PCs (to increase sta-
tistical power by removing variability due to environmental or nonlocal
genetic factors). The number of removed expression PCs was set by
evaluating the improvement in number of cis-eQTLs that were detected
based on data from one (“training”) chromosome (chromosome 18). In
particular, to select the number of PCs that are removed, the number of cis-
eQTL discoveries in raw data was compared to PC-corrected data where
we varied the number of removed PCs from 1 to 50. In order to avoid
overfitting, we optimized the number of removed PCs based on cis-eQTL
discovery on just one chromosome (and not the whole dataset). As pre-
viously observed (29), the improvement in cis-eQTL discovery greatly
increased with removal of PCs, and there was a stable plateauing effect
when we removed 20–40 PCs (see, for example, Ref. 21). As described for
the mouse data above, in the joint eQTL analysis, gene expression data from
both cell types were combined and a gene-level p value was computed for
each gene using permutation analysis (1000 permutations per gene). In this
case, the Spearman rank correlation was used as the test statistic.

Constructing regulatory networks for human/mouse
comparison

Stepwise regression was used to construct a regulatory network for T4 data.
For this analysis, we used the set of genes expressed in both humans and

mice (in T4) and were considered to have nonnegligible TV scores for T4
data in mice (as defined by Supplemental Fig. 1A), which resulted in a set
of 3407, of which 183 are TFs. For constructing the network, human data
were corrected for batch, population structure (three genotype PCs), gen-
der, and age, whereas mouse data were corrected for two genotype PCs
(mouse data were done in one batch, and the mice had identical gender and
age). Significant links were identified at a 5% FDR.

The replication rate of links identified in one species onto the other was
computed using the p1 statistic to quantify the proportion of true-positives
among the coexpression p values for the relevant links (links being rep-
licated). As above, coexpression p values were adjusted using the distri-
bution of all coexpression p values as the null.

The stepwise regression approach above identifies regulatory links in
a target-centric manner, identifying “top” regulators for each target. Ad-
ditionally, in a TF-centric manner, top targets for each TF were identified
based on the ranking of their coexpression value (Pearson correlation co-
efficient) with the given TF. In particular, two analyses were conducted.
First, for each TF in mice (humans), the top 10 targets were defined based
on coexpression values, and the overlap of these targets was assessed in the
top n = [10, 20, 30, 50] targets for the same TF in human (mouse). The
significance of the overlaps was determined using the hypergeometric test
and corrected for the number of TFs tested. Second, the evidence for
conservation of the top n = [10, 20, 30, 50] targets of each TF in mice
(humans) was assessed in humans by using the Wilcoxon rank sum test to
compare the distribution of the coexpression values for the top n targets
compared with the distribution of coexpression values between that TF and
all genes.

Results
The mice tested in the present study included 35 classic laboratory
inbred strains (Mus musculus domesticus) that represent all the
major branches of the inbred tree (1) and four “wild-derived”
strains (CAST/EiJ, PWD/PhJ, JF1/Ms, and MSM/Ms, which are
representative of the Mus musculus castaenus, Mus musculus mus-
culus, and Mus musculus molossinus, respectively). Gene expression
data for bone marrow GN and T4 were quantified using Affymetrix
ST1.0 microarrays (seeMaterials and Methods). Matching genotype
data were obtained from the Mouse HapMap Genotype Imputation
Resource (30) and included 132,285 genotyped SNPs (see Materials
and Methods). Because we did not attempt in the present study to
identify causal variants owing to the limitations imposed by the
relatively large size of linkage disequilibrium blocks in inbred mice,
the analyses only used genotyped SNPs for computational efficiency.
All expression data can be browsed or accessed on the ImmGen Web
site (http://www.immgen.org).

Extent and distribution of expression variation across strains

We first investigated the nature and extent of the transcript vari-
ability across the inbred strain panel. Overall we observed some
variability in expression levels for most genes (58% of tested genes,
or 8,544 genes in T4–or 39% of genes–and 10,006 genes in GN–
46% of genes–at 5% FDR; Supplemental Fig. 1A). Of these, 2508
genes in T4 and 3711 genes in GN had .2-fold difference be-
tween the highest two and lowest two expressing strains. Some of
the most variable genes correspond to retroviral elements (Mela,
EG665955), and some correspond to loci with known copy
number variation (e.g., Cd244, Trim12, Glo1) (31). A TV score
was computed for each gene (and per cell type) to identify tran-
scripts whose variance across the strains could be attributed to
meaningful differences, by factoring out technical factors and
unwanted variability (Fig. 1A, Supplemental Fig. 1A). In practice
we computed a TV score for each gene by contrasting a measure
of within-strain variability (computed from biological replicates)
to between-strain variability (see Materials and Methods). We
validated the reproducibility of these TV scores 1) by comparing
them to TV quantified from a previous gene expression dataset
from macrophages for the Hybrid Mouse Diversity Panel, which
included 22 of the strains tested here (11); and 2) by assessing the
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correspondence with reported variability in DNAase hypersen-
sivity sites in eight inbred strains (32). Reassuringly, we found a
significant correlation between the TV scores in GN and T4 with
those computed from macrophage data (Spearman r = 0.26 for
GN and r = 0.2 for T4, p , 102100) (Supplemental Fig. 1B). We

also observed significantly higher TV scores for genes previously
identified to have variable DNase sites nearby, compared with the
background TV scores (p , 1023; Supplemental Fig. 1C).
The distribution of expression across the strains for variable

genes covered a wide range with varying patterns (Fig. 1B, 1C). In

FIGURE 1. The extent and patterns of gene expres-

sion variation between inbred mice. A TV score was

quantified for each transcript by contrasting a measure

of between-strain variability, computed using biological

replicates for each strain, with that of within-strain

variability. (A) TV scores plotted per transcript based on

T4 and GN data; each point represents a transcript.

Colors depict preferential expression in T4 (red) or GN

(blue) as quantified by the difference between mean

expression levels. (B) Heat map of expression levels for

the top 20 most variable transcripts based on T4 and GN

data. (C) Examples of three types of “variation pat-

terns.” For each example transcript, each point repre-

sents a (mouse) strain, x-axis shows expression in T4,

and y-axis shows expression in GN.

4 GENETICS OF TRANSCRIPT VARIATION IN IMMUNOCYTES OF MICE
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most cases, a continuous spectrum was observed, hinting at a
complex genetic determinism (Fig. 1C, top row). In others, bi-

modal patterns were observed, which we quantified by assessing

the fit of a Gaussian mixture model to the expression pattern of

each gene (433 and 567 such bimodal genes for T4 and GN ex-

pression, respectively, were identified at a Bonferroni-corrected

p , 0.05; Fig. 1C; see Materials and Methods). We also searched

for instances of complete loss of function by using a combination

of the bimodality test and expression ,0.05 probability of ex-

pression in at least two strains (see Materials and Methods).

Overall, we identified 67 and 53 complete loss-of-function loci in

T4 and GN, respectively, of which 10 lost expression in both cells

(Fig. 1C, middle row; a complete list of loss-of-function loci is

available from http://www.immgen.org). An example gene dis-

playing such an on/off pattern was Raet1b, which encodes an NK

cell lectin-like receptor ligand; it was silent in five of the strains

but highly expressed in all others. This pattern was consistent for

T4 and GN, likely reflecting the variation in composition of the

Rae1a2« family, and more generally the multiplicity of targets of

NKG2D (33). There were also several instances of “conditional

loss-of-function” loci whose expression was sometimes absent in

one cell type but present in all strains in the other cell type (Fig.

1C, bottom row); for example, Rab23 transcripts were absent in

GNs for some of strains, but present in all T4s. Several of these

strains can thus serve as “natural knockouts” or “natural knock-

downs” either directly or by backcrossing the segments involved.
We assessed the impact of genetic variation on gene expression

at a global level by comparing the relationships between the strains

inferred from gene expression data with known genealogies and

with genotype-derived relationships (Fig. 2A). Simple examination

of the parallel correlation maps of Fig. 2A showed a significant

correspondence between strain relationships as derived from the

gene expression data and strain genotypes (1, 34). Differences are

sharper on the genotype than on the expression matrix, most

trivially because the former inherently focuses on differences

(SNPs) rather than on transcripts that are largely shared, and/or

because most SNPs have no transcriptional consequence. As ex-

pected, the wild-derived strains (CAST/EiJ, PWD/PhJ, JF1/Ms,

MSM/Ms) were more similar to each other than the classical in-

bred strains; the CAST/Ei strain, derived from M. m. castaneus

species, was the most distant outlier, whereas the two M. m.

molossinus–derived strains (JF1/Ms and MSM/Ms) were more

closely related to each other. Other relationships expected from

strain histories (35) include the “C57 black” group of strains, the

high pairwise similarity between CBA and C3H, or between NOD

and NOR, both of which derive from the same stock through se-

lection for susceptibility or resistance to diabetes (36).
For a better handle on the number and identity of differentially

expressed transcripts that underlie these relationships, we created

a genotype-based dendrogram depicting the relationship between

the strains and identified differentially expressed genes that

characterized each group (Fig. 2B). The wild-derived group was

associated with 2092 differentially expressed genes (5% FDR, of

which 204 differ by a fold change .2). These “wild-specific”

genes have a range of functionalities, as evidenced by the absence

of enrichment for any particular functional category based on

gene ontology analysis. Manual exploration of the top associa-

tions identified several suggestive differences: the marked under-

expression of some TLRs (Tlr1 and Tlr7) in T4 cells from wild-

derived strains; several members of the NK family (Klrd1, Klrb1f)

or of the IFN-response pathway (Ifitm1, Ifitm2) were uniquely

expressed in wild-derived T4; and transcripts encoding cell-

surface molecules whose distribution is normally restricted to

myeloid cells (Atp1a3, CD163, Anxa3) but were present in T4
from wild-derived strains.
We also noted an intriguing differential expression of Eps8l1 in

the C57 black group. Mutations in Eps8 family members lead to
diverse auditory phenotypes, and the C57 strains are known to
develop age-related hearing loss (37). At its inception, this project
aimed to find, in the genetic and gene expression data, correlates
to the phenotypic traits of these mouse strains, as assembled in the
MPD. Unfortunately, a systematic test for association between
gene expression levels and an extensive set of behavioral and
physiological traits (∼1500 traits from the MPD) (38) did not
yield significant findings when corrected for random association.
Reasons for this may include the limited number of strains for
which complete phenotypes were available, buffering of gene
expression by regulatory networks, or that the two cell types ex-
amined are not relevant to the traits currently in the MPD.

Identifying cis-eQTLs for neutrophils and T4

By correlating local genotype and expression data for the mice,
we next identified specific cis genetic variants that impact gene
expression levels in T4 and/or GN (our study did not have the
statistical power to detect trans-eQTLs). To eliminate broad
population-based trends that can result in the inflation of associ-
ation p values (30), we removed the effect of the top two PCs of
the genotype, which represent population structure, from the gene
expression data using linear regression. We chose two principal
components by assessing the inflation factor l(24) (see Materials
and Methods). We performed a cis-eQTL analysis with the
residuals of this fit, defining cis SNPs as mapping in a 1-Mb
window from the transcription start site. To increase our power to
detect eQTLs that are shared by the two cell types while also
detecting cell-specific eQTLs, we performed two analyses: 1) in
a “joint analysis,” we combined data from the two cell types and
evaluated the significance of each SNP-to-gene association using
permutation analysis; and 2) in a “cell-specific” analysis, using an
ANOVA model, we explicitly tested the significance of a cell-
specific SNP effect (see Materials and Methods). In both cases,
using permutation analysis, we obtained a gene-level p value that
took into account the number of tested cis variants (26, 27, 39) and
defined significant cis-eQTLs at 5% FDR based on these gene-
level p values.
Using the joint analysis, we identified 1047 genes with cis-

eQTLs (Fig. 3A, Supplemental Table I; available for browsing on
the ImmGen server). The joint analysis increased our discovery
power: we identified 262 eQTLs that were not detected in separate
analyses of GN and T4 data (774 and 958 eQTLs in separate
analysis of T4 and GN, respectively). We observed a significant
correlation between cis-eQTL association strengths and TV
(Spearman r = 0.29, p , 102100).
Previous studies have identified cis-eQTLs for inbred mice in

various tissues, including liver (10, 12–14) and immunocytes (10,
11). We compared our set of cis-eQTLs with those identified in
macrophages (11), which was the most relevant and comparably
sized. Orozco et al. (11) identified 1937 genes (corresponding to
4897 SNP-gene pairs) with cis-eQTLs controlling transcripts in
primary macrophages that were testable in this study. To robustly
compare results, we used Storey’s p1 statistic (28) and observed
a replication rate of 55% (p , 0.001 under permutation testing).
This estimate of overlap is similar to those previously reported in
the literature for studies involving different cell types or con-
ditions (29, 40–42).
To identify cell-specific cis-eQTLs, which should denote ge-

netic impact on cell-specific regulatory pathways, we considered
9698 genes that are expressed in both cell types. We identified 234
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significant cell-specific cis-eQTL, which indicates that ∼30% of
discovered cis-eQTLs are cell-specific (Fig. 3B), an estimate
consistent with recent reports of tissue and cell type specificity of
eQTLs in human studies (41, 42). For many genes with a cell-
specific eQTL signal, we found major differences between effect
sizes for the associated SNP in the two cell types (Fig. 3C). This
analysis also identified 17 eQTLs where expression values cor-

relate in an opposite manner in the two cell types. For 10 of the 17
genes, the same top SNP was identified from both GN and T4
data. One of the strongest eQTLs with opposite directionality of
effect was observed for Pot1a (Fig. 3D). The proportion of di-
rectional cis-eQTLs discovered in the present study is similar to
those previously detected using primary immunocytes in humans
(21, 43). This divergence may reflect the fact that a factor

FIGURE 2. Expression-based and genotype-based strain similarities. (A) The similarity between each pair of strains was computed from genotype data or

gene expression data using Spearman correlation. For expression data, all expressed genes were used in the computation. For genotype data, all variants

satisfying the initial criteria (minor allele frequency . 0.05 and missing rate , 10%) were used. Each element in the heat map (matrix) represents the

strength of the similarity between a pair of strains. Expression-based and genotype-based similarity heat maps follow the same row and column order. (B)

The dendrogram was derived from a genotype-based similarity matrix using hierarchical agglomerative clustering. To account for strain-based scale

differences between the distribution of similarities, pairwise strain distances for constructing the dendrogram were derived from ranked pairwise similarities

for each strain. Each internal node in the dendrogram was used to define two groups (clusters) of strains, which are represented by descending leaves and

nondescending leaves. Numbers of differentially expressed genes (defined using t test and a 5% FDR threshold) for groupings that yielded .100 dif-

ferentially expressed genes at 5% FDR are shown.

6 GENETICS OF TRANSCRIPT VARIATION IN IMMUNOCYTES OF MICE

 at Francis A
 C

ountw
ay L

ibrary of M
edicine on O

ctober 6, 2014
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/


recruited to the same motif acts in an opposite manner in the two
cells, but it is also possible that the SNP identified is in linkage
disequilibrium with two different causal SNPs, each active in one
cell type only.

Identifying regulatory links by coexpression analysis

Gene expression datasets that carry small “perturbations” such as
those resulting from genetic variation can be fruitfully exploited
to reverse-engineer the structure of genetic regulatory networks
(44–46), with the caveat that relationships based solely on base-
line coexpression cannot resolve causal from merely correlative
associations. We constructed regulatory networks where we
inferred interactions (links) between a set of 164 TFs and 3675
candidate downstream targets using stepwise regression. This
analysis included only genes that were expressed in both cell types
and had a nonnegligible TV score (as per Supplemental Fig. 1A).
As above, to avoid artifacts from broad population structure, we
used the genotype PC–corrected data. We identified 3462 and
3321 significant (5% FDR) links in T4 data and GN data, re-

spectively, and 4927 links in a joint network constructed using
both T4 and GN data. For these networks, few regulatory hubs
correlated with expression levels of a large number of targets
(.100), and most TFs were linked to #15 targets (Fig. 4A, 4B).
The major hubs mostly include chromatin modifiers and generic
transcriptional activators such as Smarcd1 and Smarce1 (SWI/
SNF-related chromatin regulators), Asf1b (a histone chaperone),
Phf21a (a histone deacetylase), and the histone deubiquitinase
Mysm1 (Fig. 4B).
We evaluated the overlap between GN- and T4-inferred regu-

latory links using Storey’s p1 statistic (28). Considering only the
interactions passing the statistical significance threshold in the
discovery sample (5% FDR), we estimated replication rates of p1

of 53 and 49% for T4 links in GN and vice versa, respectively,
indicating that a large fraction of these associations is shared
among the two cell types. Conversely, by directly testing the
significance of a cell type–specific effect (see Materials and
Methods), we estimated that 17% of total interactions are truly cell
specific (at 5% FDR). With the interaction test, Lmo2 was one of

FIGURE 3. GN and T4 joint-discovered and cell-specific cis-eQTLs. (A) Association p values for each transcript and all of its cis SNPs (1 Mb from the

TSS) were computed using the Wilcoxon rank sum test. Association statistics were computed from both T4 and GN data (joint analysis). Each point

represents a transcript; only the best association for each transcript is shown. (B) For each cell type, association p values for SNP-transcript pairs were

computed separately. The association p values are shown for the best GN SNP and best T4 SNP for each transcript (i.e., each transcript is represented

twice). (C) Cell-specific SNP-transcript association p values were computed using an ANOVA model. Effect sizes for the best SNP for each transcript and

each cell type were computed as the mean difference between strains with alternative and reference alleles. Colors depict the strength (negative log10
p value) of cell specificity at gene level. The figure shows effect size and association strengths for the best SNP for all expressed genes. (D) Heat map shows

the expression levels for the gene Pot1a in GN and T4. Strains are sorted based on the genotype of the best SNP for Pot1a.
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the most differential regulatory hubs, with 51 inferred links in GN,
but only four potential target genes in T4, which likely denotes
a very specific role in GN (its targets in GN do not correspond to
a distinct functional category in gene ontology analysis).
For an independent validation of coexpression relationships

identifiable from this data, we compared a joint set of links
identified from analysis of both cell types (joint network; see
Materials and Methods) with a previous network constructed from
the ImmGen compendium using the Ontogenet algorithm. Onto-
genet exploits variation in expression through differentiation
cascades to identify regulatory relationships (7). We hypothesized
that true TF-target pairs identified by Ontogenet would also show
evidence of coexpression when natural genetic variation was the
network perturbant. First, we evaluated the strength of coex-
pression between pairs of TFs-targets previously identified by
Ontogenet, and, using the p1 statistic on adjusted p values for
coexpression correlation coefficients (seeMaterials and Methods),
we found that 27% of these links show evidence of coexpression.
Conversely, we checked whether the targets of each TF are also
more likely to belong to the same Ontogenet module by testing for
significantly enriched Ontogenet modules among the predicted
targets of each TF using the hypergeometric test. For 11 of the 127

TFs with at least 10 inferred targets, the targets were significantly
enriched in an Ontogenet (fine) module at 5% FDR (Supplemental
Table II). For example, Srebf2, which encodes a sterol regulatory
TF, was associated with 33 genes in this study, 9 of which were
part of the same module and predicted by Ontogenet to be regu-
lated by Srebf2 (p , 10215; Fig. 4C). Another well-known set of
replicated links was between Irf9 and six of its known targets
within the IFN response signature (p , 1028; Fig. 4C). Although
less robust to differences in inference method and sample sizes,
we also directly evaluated the overlap between the inferred
regulatory links in this study and those of Ontogenet, where we
observed a modest (4%) but significant overlap (hypergeometric
p , 10210).
Coexpression relationships that underlie the regulatory links

in the present study are not conclusive of directionality. To dis-
entangle causal from simply correlative associations in the present
network, we examined the propagated influence of cis variants
associated with the inferred TFs (47). In practice, we asked
whether a cis-eQTL SNP for a TF was also correlated with the
expression levels of the TF’s inferred targets. Within the set of
links identified in the joint network (4927 links), 230 links were
testable, as they were incident to 1 of the 15 TFs for which

FIGURE 4. Analysis of gene coexpression in mice. (A) Overall network showing TF-target links discovered from T4 and GN data (joint network; for

visualization purposes, figure only shows a limited set of the strongest links). TFs are marked in red. (B) Figure shows the node degree for each TF in T4

(x-axis) and GN (y-axis) networks. (C) Expression heat maps for selected regulators and their inferred targets; top panel shows data for Srebf2 and nine of

its targets, and the bottom panel shows data for Irf9 and six of its targets (only targets that overlap with the Ontogenet predictions based on ImmGen data

are shown).
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a cis-eQTL had been identified above; 50 links (22%) were
“causally” supported, in that the genotype at the cis-eQTL was
significantly associated with the expression of the TF’s targets
at 5% FDR.

Comparison of variation in gene expression in humans and
mice

Comparative studies of gene expression patters across species have
mainly focused on comparing similarities and differences in ex-
pression across tissues, cell types, or responses to triggers. In these
studies, conserved cell type specificity or response to similar
triggers across species is taken to indicate conserved functionality
(19, 48–53). The impact of genetic variation in each species is
averaged, smoothed, or factored out in such analyses. Instead, we
sought to exploit the diversity of genetic background across inbred
mice and across the human population sampled in the ImmVar
study (which includes 360 healthy individuals from Asian, Afri-
can, and European backgrounds with available expression data for
CD4 and CD14 cells; the derivation and analysis of ImmVar
datasets are detailed elsewhere; see Ref. 21). ImmVar was de-
signed to match the present analysis in several respects (parallel
profiling of T4 in both humans and mice). We took advantage of
these congruent datasets to explore the similarities and differences

in expression variability, the impact of cis regulatory variation,
and the inferred regulatory interactions in mice and humans. For
this analysis, we considered 14,130 genes with one-to-one human/
mouse orthology (MGI HMD_Human5 set) and restricted the
analysis to 5,964 genes expressed in T4 (we only analyzed the T4
data, because of the exact correspondence of this cell type in our
data from the two species).
First, we applied the same TV metric of variation discussed

above to compare the variability in genes’ expression in humans
and mice. The TV scores were calculated for human genes by
using replicate samples prepared from the same donor (collected
at intervals ranging from 3 to 25 wk) after accounting for batch,
age, and gender (using linear regression). The TV metric allowed
us to eliminate genewise technical variability and only capture
biological variability (responding to environmental and/or genetic
cues). Human versus mouse comparison of the TV scores showed
interesting patterns (Fig. 5A–C); some genes were variable in one
species or the other, but in general there was a correlation between
TV in mice and humans (Spearman r = 0.16, p , 10210). We
categorized genes into five equally sized bins in each species
based on TV scores and found significant predictability of TV
scores in the second species based on the assigned bin in the first
species (Fig. 5C; Wilcoxon rank sum test p values of 1024 to 1028

FIGURE 5. Sharing of variability and coexpression in mice and humans. (A) Density map of the scatter plot for TV scores (expressed genes only) in T4

of humans and mice (Spearman correlation r = 0.16). For visualization purpose, the figure is zoomed in on the high-density region. (B) Density map of the

scatter plot for TV ranks (TV scores were transformed to ranks; in each species, highest TV score is assigned a rank of 5965). (C) To quantify the sig-

nificance of the overlap of variable genes in the two species, mouse and human TV scores were each binned into five equally sized bins, and for each pair of

TV bins (a square), the density of genes observed in that square was compared with density of genes in the same square under random mapping of human

genes to mouse genes. Fifty thousand permutations (permuting the mapping between human and mouse genes) were performed to quantify the significance

of the observed density in each square. Colors depict the strength of these p values (negative log10 p value). (D) Figure shows the network degree (number

of inferred links) for each TF in the human and mouse networks. (E) Heat map summarizes the number of shared top targets for each TF in humana and

mice. The top 10 targets for each TF in humans (mice) were first identified, and then the overlap with the top n = [10, 20, 30, 40, 50] mouse (human) targets

for the same TF was computed. Only regulators with at least 4 overlapping targets in the list of top 50 targets (p, 1026) are shown. The second plot shows

the result where the top 10 targets for each regulator in mice were evaluated in human data.
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for bins created in mice and humans, respectively); for example,
26% of the genes in the top bin (most variable) in one species are
also categorized in the top bin the other species.
The variability captured by the TV metric encompasses envi-

ronmental and other factors beyond the impact of genetic variation.
To compare the extent of genetically determined variation in gene
expression in both species, we evaluated the overlap of cis-eQTLs
in humans and mice. Using the same methodology as above, we
identified 2285 cis-eQTL genes in the human ImmVar datasets
among the set of 7098 expressed genes in both species (either cell
type) (eQTLs identified using the joint analysis; see Materials and
Methods). Of the 674 genes associated with an eQTL discovered
in mice for this set of expressed genes, 275 were also associated
with an eQTL based on human data (hypergeometirc p , 1026),
implying that genes that show a significant impact of local genetic
variation tend to overlap in mice and humans, even though the
variants themselves are certainly unrelated.
Next we compared gene regulatory networks constructed from the

T4 dataset for both humans and mice. The motivation was to analyze
the evolutionary conservation of these regulatory links, and from
a practical standpoint to validate the inferences by confirmation in
another species. For each species, we first constructed a network us-
ing stepwise regression as above (see Materials and Methods). At
a global level, we observed a correlation between TFs’ out-degree
(the number of targets connected to each TF; Fig. 5D), with 38% of
the top 20% hubs in one species shared with the second species (p,
0.01). As above, chromatin modifiers tend to be strong regulatory
hubs in both species. We used the p1 statistic to estimate the fraction
of TF-to-target links identified in one species that are replicated in
the second species. A 47% replication rate was observed for mouse
links in the human T4 dataset, and a 19% replication rate was found
for human links in the mouse dataset (permutation analysis p ,
0.001) (Supplemental Fig. 2A, 2B). Finally, in a regulator-centric
analysis, we also assessed the correspondence between top coex-
pressed links for each TF in the two species. To do so, we assessed
the overlap and the distribution of coexpression values (correlation
coefficients) for the top n = [10, 20, 30, 50] targets of each TF in the
second species (see Materials and Methods). Of the 189 TFs that
were analyzed, we identified 17 TFs whose top 10 targets were
highly conserved (hypergeometic test p , 1026; Fig. 5E), and the
top targets of an additional set of 42 TFs showed significant evidence
of high coexpression values in the second species (using the
Wilcoxon rank sum test; Supplemental Fig. 2C, 2D). Among
these highly conserved coexpression links, we identified well-known
relationships, including coexpression between Irf9 and IFN re-
sponse genes Dhx58, Ifi35, Irf1, Pml, Trafd1, and Stat2 and
strong coexpression between Jun and Fos and known early response
genes (Ier2, Gadd45b). We did not attempt to interpret the divergent
regulatory links within these datasets: these are not conclusive of
true differences, because multiple confounding factors can underlie
such differences (different environmental influences, much smaller
sample size for the mouse data, imperfect mapping of human to
mouse probes). Overall, these comparisons show that many of the
regulatory connections that can be inferred from the interindividual
variation in expression profiles are conserved between these two
mammalian species.

Discussion
Our motivation, in the context of the ImmGen and MDP programs,
was threefold: to serve as a reference of genomic and genetic
information relevant to the immune function in mice, to provide
additional material for the dissection of genetic regulatory net-
works, and to provide a documented basis for comparison of the
mouse and human immune systems.

In terms of resources, the present data provide useful information
at several levels, and are all available interactively from the
ImmGen and MDP Web browsers (http://www.immgen.org, http://
phenome.jax.org). We detected a number of genes with a .2-fold
change in expression across the strains (the empirical rule of
thumb for functional significance). It will be interesting to see how
these traits segregate in settings such as the Collaborative Cross
strains, where the chromosomal segments can be traced in the
recombinant chromosomes, allowing refinement of the genetic
control and/or discovery of epistatic modifiers. Variation followed
both bimodal and continuous expression patterns across mouse
strains, including a few loci with complete loss of expression in
some of the strains. As such, these can serve as a resource of
natural knockdowns or natural knockouts (some affecting both cell
types, others cell-specific). The 1222 cis-eQTLs detected in the
two immunological cell types are also available through the
dedicated ImmGen interface. However, the relatively large sizes of
the linkage disequilibrium blocks in these inbred mouse strains,
relative to outbred humans or mice (22), make it impossible to
pinpoint with precision the causal variant, and the SNPs listed
should only be considered as likely proxies of the truly relevant
variant. Nevertheless, the patterns of variation and the eQTLs
described here, and their conservation across species, may help to
interpret differences in susceptibility to infection or autoimmune
diseases, in a manner than translates to genetic in risk human
populations.
The patterns of interstrain variability followed, as expected, the

patterns of genetic distance and genealogical history between the
strains. Wild-derived strains were predictably more distant from
the classic inbred lines. Some of this genetic distance may be
directly related to selective events during mouse domestication or
to the input from non-domesticus subspecies. We previously re-
ported that a variant at the Il1b locus, which leads to a 5- to 10-
fold greater IL-1 response to stimulation through innate receptor
pathways, is frequent in wild-derived strains but quite rare among
classical inbred strains (54), and some of the expression variations
uncovered in the present study may be of the same nature (e.g.,
Tlr1 and Tlr7, although in this instance it is the wild-derived
strains that show low or absent expression in T4). Some genes
whose expression is normally confined to myeloid cells across the
ImmGen compendium were expressed in T4 of the wild-derived
strains. Some of these conditionally expressed genes are surpris-
ing, such as the expression of CD163, a scavenger receptor on
macrophages whose function in T4 is not immediately obvious.
We might speculate that this reflects a mode of innate sensing by
T4 that was lost during domestication (interestingly, however,
human T cells do not express these monocyte genes).
The distribution of cis-acting genetic variation was significantly

correlated with the variation in expression for the most variable
genes, although many of the genes with a high TV score did not
show an active cis-eQTL. Recent literature indicates a larger
impact for local sequence variation, which may have been de-
tectable with larger sample sizes (29, 55), perhaps attainable with
a larger study of outbred or Collaborative Cross mice. We note
that the number of cis-eQTLs detected in the present study is more
than what would be expected from an equally sized human dataset
(28) where the effect of environment cannot be as effectively
controlled.
The coexpression-based network estimated in this study ex-

tended the analysis of the regulatory networks of immunocytes
initiated in ImmGen (7), and we observed a comforting degree of
overlap between the two analyses. Although coexpression can-
not formally identify causal directionality in a correlated pair
(i.e., who controls whom), the selection of transcriptional regu-
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lators provides a functional prior for directionality. Indeed, when
we searched for causal chains of associations, by correlating a cis
variant impacting the expression of a TF with the TF’s down-
stream effects on its inferred targets, a significant portion (22%) of
the testable links turned out to be causally driven. Interestingly,
connections identified from interstrain variation more frequently
involved generic regulators such as chromatin modifiers, which
showed up in the present study as major hubs, than classic
sequence-specific DNA-binding TFs and lineage determination
factors (which were predictably more prevalent in the Ontogenet
analysis). This difference is in line with the paucity of cis-eQTLs
for classic TF regulators involved in differentiation or lineage de-
termination, as previously shown in human cells (29, 56). One
might speculate that a degree of “noise” in transcript level resulting
from variations in redundant and pleiotropic factors is better toler-
ated (or even favored) than variation in more specific factors that
form the blueprint of cell differentiation and lineage determination.
This dominance of broad transcriptional regulators as major coex-
pression hubs was strikingly reproduced in the human datasets.
Finally, we observed sharing of the patterns of expression var-

iability between humans and mice. Both genetic and nongenetic
factors can result in expression variability, and we also observed
significantly nonrandom overlaps in genes that are associated with
cis-eQTLs in both species. From an evolutionary standpoint, this
“conservation of variability” can be explained by species-shared
strength of selection pressure on gene expression levels (57):
variation in more redundant and/or less essential genes is better
tolerated, and these characteristics would tend to be conserved. It
is also possible that some of this species-shared variability is in
genes whose intraspecies variation is favorable. The extraordinary
diversification of coding sequence in MHC genes favors hetero-
zygosity in individuals and diversity at the level of the species to
best meet variable pathogen challenges (58). Similarly, it may be
advantageous to diversify the levels of expression, and hence of
response potential, in pathways of the immune system. Genes
controlling activating and inhibitory NK receptors would plausibly
fall in that category. From a mechanistic standpoint, one might
also imagine different scenarios for the roots of this reproducible
variability: some regions of the genome may be inherently noisier,
a characteristic preserved during the evolutionary shuffling of
syntenic chromosomal regions; regulatory feedback loops that
control individual genes or sets of genes may be more or less
robust; and microRNAs or other noncoding RNAs might make for
a variable degree of control. Any of these mechanisms may have
been, to an extent, preserved through 200 million years of evo-
lution to conserve immunologically relevant variation.
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